The authors thank Dr Jan Tollenaere of Janssen Research Foundation (Beerse, Belgium) for providing a sample of the title compound.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: NA1252). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). *The DIRDIF Program System.* Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.
- Fait, J. (1991). XSCANS Users Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- McArdle, P. (1994). J. Appl. Cryst. 27, 438-439.
- Nardelli, M. (1983). Comput. Chem. 7, 95-98.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Siemens (1989). XEMP. Empirical Absorption Correction Program. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (1996). C52, 2797-2800

Two Photoproducts Derived from 11,12-Dibenzoyl-9,10-dihydro-9,10-dimethoxy-9,10ethenoanthracene

S. Ajaya Kumar,^{*a*} Thomas Mathew,^{*a*} Suresh Das,^{*a*} Nigam P. Rath^{*b*} and M. V. George^c

^aPhotochemistry Research Unit, Regional Research Laboratory (CSIR), Trivandrum 695019, India, ^bDepartment of Chemistry, University of Missouri–St. Louis, 8001 Natural Bridge Road, St. Louis, MO 63121, USA, and ^cRadiation Laboratory, University of Notre Dame, Notre Dame, IN 46556, USA. E-mail: nigam_rath@umsl.edu

(Received 18 July 1994; accepted 22 April 1996)

Abstract

Photolysis of 11,12-dibenzoyl-9,10-dihydro-9,10-dimethoxy-9,10-ethenoanthracene, (1), in a mixture of benzene and methanol gives the dibenzofuranopentalene (3), whereas irradiation of (1) in a mixture of benzene and aqueous methanol gives a mixture of the dibenzopentalenone (4) and the dibenzofuranopentalene derivative (5). The structures of two of these photoproducts, namely, the methanol solvate of 8c-benzoyl-8b,8c-dihydro-4b,8b-dimethoxy-4bH-dibenzo[a,f]furano[3,4,5-c,d]pentalene, C₃₂H₂₄O₄.0.5CH₃OH, (3), and 8cbenzoyl-8b,8c,8d,9-tetrahydro-8b,8d,9-trimethoxy-4bHdibenzo[*a*,*f*]furano[3,4,5-*c*,*d*]pentalene, C₃₃H₂₈O₅, (5), have been determined by X-ray diffraction methods.

Comment

It has been reported previously that the photolysis of the dibenzobarrelene (1) in benzene, methanol or acetone leads to the dibenzosemibullvalene derivative (2) (Murty, Pratapan, Kumar, Das & George, 1985). In a recent study, it was shown that the photolysis of (1) gives rise to different products depending on the reaction conditions (Kumar, Asokan, Mathew, Ramaiah, Das, Rath & George, 1996). Thus, photolysis of (1) in a mixture of methanol and benzene (4:1) gives a 90% yield of (3) whereas irradiation of (1) in aqueous methanol gives a mixture of (4) (40%) and (5) (34%).

The present study was undertaken in order to confirm the structures of compounds (3) and (5). Compound (3) may arise through the opening of the cyclopropane ring in (2) followed by ring closure analogous to the phototransformations of 9-aryl-substituted dibenzobarrelenes (Pratapan, Ashok, Gopidas, Rath, Das & George, 1990). Both (4) and (5) may arise through an ionic cleavage of the cyclopropane ring in (2) followed by the loss of a methyl group in the case of (4) and the addition of methanol in the case of (5).

Both (3) and (5) contain a dibenzopentalenofuran skeleton, incorporating a pentacyclic fused-ring core containing two six- and three five-membered rings, which has the shape of a shallow bowl in each case (Figs. 1 and 2). In the case of (3), the methoxy groups at the C4b and C8b positions and the benzoyl group at the C8c position lie on the outer side of the bowl whereas in (5), the benzoyl group at C8c and the methoxy substituent at C4b are *cis* with respect to one another. The 'butterfly angles' formed by the fusion of the two indane systems are 106.5 and 112.3° for compounds (3) and (5), respectively.

Compound (3) crystallizes as a hemisolvate with half a molecule of methanol per molecule. The solvent molecule exhibits large anisotropic thermal motion owing to disorder which could not be resolved. The occupancy factor was refined for the solvent molecule.

C32H24O4.0.5CH4O AND C33H28O5

Fig. 1. View of (3) showing the labeling of the non-H atoms. Displacement ellipsoids are shown at 40% probability levels. For clarity, the solvent of crystallization has not been shown.

Fig. 2. View of (5) showing the labeling of the non-H atoms. Displacement ellipsoids are shown at 40% probability levels.

Experimental

Compounds (3) and (5) were prepared according to Kumar et al. (1996).

Compound (3)Crystal data $C_{32}H_{24}O_{4}.0.5CH_{4}O$ Mo K α (graphite-
monochromated) radiation $M_r = 488.53$

Monoclinic
$P2_1/n$
a = 11.664 (4) Å
<i>b</i> = 17.476 (6) Å
c = 12.408 (4) Å
$\beta = 94.81 (3)^{\circ}$
$V = 2520.3 (15) \text{ Å}^3$
Z = 4
$D_x = 1.287 \text{ Mg m}^{-3}$
D _m not measured

Data collection

Siemens R3 diffractometer $\omega - 2\theta$ scans Absorption correction: none 6062 measured reflections 5786 independent reflections 1843 observed reflections $[I > 2\sigma(I)]$ $R_{int} = 0.0387$

Refinement

01

02

03

09

C1 C2

C3 C4

C4a

C4b C4c C5

C6 C7

C8

C8a C8b C8c

C8d C8e

C10

C11 C12 C13

C14

C15 C16

C17

C18

Refinement on F^2 $(\Delta/\sigma)_{max}$ R(F) = 0.0435 $\Delta\rho_{max} =$ $wR(F^2) = 0.0816$ $\Delta\rho_{min} =$ S = 0.777Extinctio5784 reflectionsAtomic s338 parametersfrom IH-atom parameters not
refinedfor Cr_T
Vol. C $w = 1/[\sigma^2(F_o^2) + (0.01P)^2]$
where $P = (F_o^2 + 2F_c^2)/3$ 6.1.1.4

- $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 reflections $\theta = 8.0-12.5^{\circ}$ $\mu = 0.085 \text{ mm}^{-1}$ T = 293 (2) KIrregular $0.40 \times 0.30 \times 0.30 \text{ mm}$ Colorless
- $\theta_{max} = 27.50^{\circ}$ $h = 0 \rightarrow 16$ $k = 0 \rightarrow 24$ $l = -17 \rightarrow 17$ 3 standard reflections monitored every 100 reflections intensity decay: 4%
- $(\Delta/\sigma)_{max} = -0.023$ $\Delta\rho_{max} = 0.202 \text{ e Å}^{-3}$ $\Delta\rho_{min} = -0.180 \text{ e Å}^{-3}$ Extinction correction: none Atomic scattering factors from International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4)

Fable	1.	Fr	acti	ona	1.	atomi	С	coordinates	a	nd	equ	ivale	nt
	isot	trop	vic a	lisp	lac	cemen	t	parameters ((Å	$^{2})f$	or (ŝ	3)	

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

х	y	z	U_{eq}
0.35210 (14)	0.64422 (9)	0.40267 (13)	0.0638 (5)
0.20556 (15)	0.76449 (10)	0.15820 (13)	0.0707 (6)
0.1834 (2)	0.60704 (11)	0.2336 (2)	0.0908 (7)
0.08777 (13)	0.83452 (9)	0.26311 (12)	0.0565 (5)
0.0575 (2)	0.72702 (13)	0.6134 (2)	0.0532(7)
0.1086 (2)	0.69257 (14)	0.7067 (2)	0.0614 (8)
0.2173 (2)	0.66227 (15)	0.7090 (2)	0.0616(8)
0.2801 (2)	0.66550 (14)	0.6189 (2)	0.0555 (7)
0.2293 (2)	0.69870(13)	0.5262 (2)	0.0440 (6)
0.2820(2)	0.70882 (14)	0.4186 (2)	0.0471 (7)
0.3425 (2)	0.78508 (15)	0.4078 (2)	0.0487 (7)
0.4344 (2)	0.8119 (2)	0.4751 (2)	0.0609 (8)
0.4759 (2)	0.8847 (2)	0.4568 (2)	0.0719 (9)
0.4245 (3)	0.9297 (2)	0.3742 (2)	0.0752 (9)
0.3324 (2)	0.9032 (2)	0.3082 (2)	0.0614 (8)
0.2926 (2)	0.82890(15)	0.3235 (2)	0.0492 (7)
0.1925 (2)	0.78832 (15)	0.2639 (2)	0.0523 (7)
0.1712 (2)	0.72095 (13)	0.3385 (2)	0.0450 (6)
0.0909 (2)	0.76042 (14)	0.4124 (2)	0.0425 (6)
0.1182 (2)	0.72981 (13)	0.5218 (2)	0.0421 (6)
0.0469 (2)	0.82336 (15)	0.3647 (2)	0.0453 (6)
0.1242 (2)	0.6460 (2)	0.2875 (2)	0.0590 (8)
0.0074 (2)	0.6190 (2)	0.3098 (2)	0.0536(7)
-0.0902 (3)	0.6614 (2)	0.2838 (2)	0.0673 (8)
-0.1971 (3)	0.6324 (2)	0.3018(3)	0.0891 (11)
-0.2053 (3)	0.5615 (2)	0.3489(3)	0.0990(12)
-0.1090 (3)	0.5194 (2)	0.3754 (2)	0.0911 (11)
-0.0023 (3)	0.5474 (2)	0.3551 (2)	0.0703 (8)
-0.0332 (2)	0.88102 (15)	0.3953 (2)	0.0460(7)

C19 C20 C21 C22 C23 C24 C25 C1 <i>S</i> † O1 <i>S</i> † † Occup	-0.1140 (2) -0.1886 (2) -0.1845 (2) -0.0058 (2) -0.0303 (2) 0.4231 (2) 0.2200 (2) 0.0066 (13) 0.1234 (6) pancy = 0.480 (0.8654 (2 0.9217 (2 0.9941 (2 1.0102 (2 0.9546 (2 0.64872 0.8231 (2 -0.0143 (-0.0035 (4 3).	2) 2) 2) 2) 2) (15) 2) 10) 4)	0.4684 (2) 0.4981 (2) 0.4550 (2) 0.3821 (2) 0.3530 (2) 0.3135 (2) 0.0811 (2) 0.004 (2) 0.0535 (7)	0.0584 (8) 0.0734 (9) 0.0795 (10) 0.0722 (9) 0.0577 (7) 0.0840 (10) 0.0984 (11) 0.220 (4) 0.220 (4)	S = 0.97 4218 ref 343 para H-atom refine w = 1/[c where Table 2	Polections ameters parameters r $d^{2}(F_{a}^{2}) + (0.0)$ $e^{2}P = (F_{a}^{2} + 0.0)$	$\frac{1}{2F_c^2}$	Extinction Atomic from for Ca Vol. C 6.1.1.	on correcti scattering Internation rystallogra C, Tables 4 4)	on: none factors <i>aal Tables</i> <i>phy</i> (1992, .2.6.8 and
Tabl	e 2. Selected	l geometrie	c pare	ameters (Å, °	ise ise	otropic disp	lacement j	paramete	ers (Ų) fo	equivalent pr (5)	
01—C4t)	1.418 (2)	C4b-	-C8c	1.577 (3)		 Um	$=(1/3)\Sigma_{1}\Sigma_{2}$	Usa*a*s	n.a.	
01C24 02C81	1	1.439 (2) 1.397 (2)	C4c	-C8a -C8b	1.385 (3) 1.506 (3)		v eq	- (1/3)2/2	1)01,u _i u _j 1	7	Um
02—C2	5	1.422 (3)	C8b-	-C8c	1.531 (3)	01	م 0.88709 (6)	0.40290	(11) 0.	56275 (6)	0.0393 (5)
03-CI)	1.211 (3)	C8c-	-C80 -C11	1.529 (3)	O2	0.84723 (7)	0.11464	(12) 0.	60192 (6)	0.0465 (5)
09-C8	5	1.463 (3)	C8d	-C10	1.331 (3)	03	0.96086(7)	0.1060 (.	(13) 0.	72268 (6)	0.0512(6)
C4aC8	Se	1.402 (3)	C8d-	-C8e	1.470 (3)	010	0.97997 (6)	0.11153	(10) 0.	59777 (6)	0.0402 (5)
C4a—C4	lb 1a	1.526(3)	C10-	-C18	1.446 (3)	C1	0.91031 (10)	0.1294 (2) 0.	44742 (9)	0.0468 (8)
C40-C4	+C	1.519(5)	C11-	-012	1.490 (3)	C2	0.90749 (11)	0.1683 (3) 0.	38344 (10)	0.0543 (11)
C4b-O	1 - C24	116.1(2)	C80-	-C8cC11 -C8cC4b	118.5(2) 101.2(2)	C3	0.91165 (10)	0.2596 (2) 0. 2) 0.	.37555 (9) 43180 (8)	0.0531(11) 0.0407(7)
	2	105.3(2)	C8b-	-C8cC4b	101.2 (2)	C4 C4a	0.92032 (9)	0.2764 (2) 0. 2) 0.	49633 (8)	0.0295 (8)
C8e-C4	la—C4b	111.1(2)	C11-	-C8cC4b	113.0 (2)	C4b	0.93443 (9)	0.3248 (2) 0.	.56301 (7)	0.0299 (6)
01—C4	b—C4c	114.1 (2)	C10-	-C8dC8e	139.2 (2)	C4c	1.01783 (9)	0.3472 (2) 0.	57521 (8)	0.0310 (6)
C4c-C4	1b—C4a	113.7 (2)	C10-	-C8dC8c	109.8 (2)	C5	1.06149 (10)	0.4070 (2) 0. 2) 0.	53834 (9)	0.0429 (7)
C4c - C4	D	118.1(2) 100.9(2)	Cae-	-CouCoc C8eC4a	119.2 (2)	C6 C7	1.13031 (10)	0.4222 (2) U. 2) ()	.55755(10)	0.0508 (8)
C8a-C4	4c—C4b	112.5 (2)	Ci—	C8e—C8d	133.1 (2)	C8	1.12366 (10)	0.3163 (2) 0.	.64866 (9)	0.0452 (7)
O2—C8	b—09	108.4 (2)	C4a-	-C8eC8d	107.8 (2)	C8a	1.04795 (9)	0.30121	(15) 0	63016 (8)	0.0329 (6)
02	b—C8a	117.4 (2)	C8d-	-C1009	H1.6 (2)	C8b	0.98952 (9)	0.2420 (2) 0. 2) 0.	.66381 (8)	0.0307 (8)
09	Б—С8а h—С8с	110.8(2) 112.0(2)	09-	C10-C18	114.6 (2)	C8d	0.91655 (8)	0.2518 (2) 0. 2) 0	.57989 (8)	0.0300(7) 0.0371(7)
09	b	104.5 (2)	03-	C11-C12	119.8 (3)	C8e	0.91575 (8)	0.1849 (2) 0	.50439 (8)	0.0311 (8)
C8a—C	8b—C8c	102.9 (2)	03—	C11-C8c	120.5 (3)	C9	1.00579 (9)	0.1414 (2) 0	.66301 (8)	0.0373 (8)
C8d—C	8c—C8b	98.9 (2)	C12-	C11C8c	119.6 (2)	C10	0.84472 (9)	0.2732 ((15) 0	.66213 (8)	0.0432(7)
رەمر	8cC11	114.0(2)				C12	0.70825 (9)	0.28222	(15) 0 2) 0	.67714 (9)	0.0546 (8)
Comp	ound (5)					C13	0.63351 (11)	0.3076 (2) 0	.65532 (11)	0.0664 (9)
Crysta	l data					C14	0.61545 (11)	0.2926 (2) 0	.58848 (12)	0.0609 (8)
	0		¥4-	K. (analita		C15	0.67252 (10)	0.2732 (2) 0 2) 0	.54281 (10) 56441 (8)	0.0526(8) 0.0485(7)
C ₃₃ H ₂₈	3 0 5		NIO	$\kappa \alpha$ (graphice-	l) andintina	C10 C17	1.08902 (9)	0.1136 (2) 0 2) 0	.67007 (9)	0.0394 (7)
$M_r = 2$	04.55		, m	onochromated	i) radiation	C18	1.13490 (11)	0.1025 (2) 0	.61351 (10)	0.0499 (8)
Orthor	nombic		$\lambda =$	0./10/3 A		C19	1.21271 (12)) 0.0884 (2) 0	.62099 (13)	0.0701 (9)
Pbca	512 (S) Å		Cell	parameters n	om 33	C20	1.24462 (13)) 0.0840 (2) 0	.68470(15)	0.0753(9)
a = 17	.513 (5) A		re	nections		C21 C22	1.19971 (13)	0.1086 ($\frac{2}{2}$ 0	.73457 (10)	0.0558 (8)
b = 14	.897 (6) A		$\theta =$	9.1-14.6		C23	0.89683 (12)) ().4647 (2) 0	.61784 (10)	0.0559 (8)
c = 19	.587 (8) A		$\mu = \pi$	0.088 mm		C24	0.83022 (12	0.0310 (2) 0	.57024 (13)	0.0705 (10)
V = 51	$10.1 (33) A^3$		<i>T</i> =	293 (2) K		C25	0.95507 (14) 0.0120 ((3) 0	.71989 (12)	0.0792 (12)
Z = 8		2	Rect	langular	~ -						
$D_x = 1$	312 Mg m ⁻	5	0.40 Cold	$1 \times 0.40 \times 0.1$	35 mm	Table	e 4. Selectea	geometri	c parame	eters (A, °) for (5)
$D_m = 10$	t measured		COR	11035		01—C23		1.428 (2)	C4a—C4t)	1.506 (2)
Data c	ollection					01-C4b		1.429 (2)		;	1.517(2) 1.577(3)
Siama	no P3 diffract	ometer	A	- 20.08°		02-C3u		1.424 (3)	C4cC8a		1.381 (2)
		ometer	b _	-29.90		O3-C25		1.406 (3)	C8a—C8t)	1.503 (3)
$\omega - 2\sigma$	scalls	~ ~ ·	$n = k_{-}$	$-24 \rightarrow 24$		O3—C9		1.416 (2)	C8b—C9		1.526 (3)
Absor	buon correcu	on:	$\kappa = 1$	$0 \rightarrow 0$		04—C10		1.210 (2)	C8b-C80		1.556 (2)
15660		Jantiona	$i = \cdot$	$-2/ \rightarrow 2/$	0.00	010	4	1.427(2) 1.435(2)		, 1	1.554 (3)
1009	measured rei	fections	5 512	andard reflecti	0118 	C1-C8e		1.392 (3)	C8d	:	1.522 (2)
42181	ndependent r	effections	m	roffections	y 100	C4a—C8e	•	1.377 (3)	C9C17		1.521 (3)
24/00	2 - (D)	ctions	·	tenetty decorr	100	C23-01-	—C4b	116.92 (13)	C10C80	c—C4b	113.5 (2)
< 1]	$-2\sigma(1)$		10	density decay		C8d-02-	C24	117.9 (2)	C8d	c—C4b	105.24 (14)
$\kappa_{\rm int} =$	0.0378					C25-03-		116.4 (2)	C8b-C80	C40	107.05 (14)
Refine	ment					C2-C1-		118.7 (3)	02-C8d		116.17 (14)
			(-) 0.003		C8eC4a	i—C4	120.9 (2)	010	d—C8e	109.14 (14)
Kenne	ment on F ²		(Δ)	$\sigma_{\text{max}} = 0.003$	Å −3	C4—C4a-	-C4b	126.4 (3)	O2_C8d		108.18 (14)
K(F) =	= 0.0389		$\Delta \rho_{\rm n}$	hax = 0.199 e	h^{-3}	01-C4b	C4a	107.84 (14)	010	dC8c 1C8c	106.94 (13)
WK(F [*]	y = 0.1041		$\Delta ho_{ m n}$	nin = -0.14/0	- A	01-046		112.3(2)	LUC-LO		100.1 (2)

C4a—C4b—C4c O1—C4b—C8c	112.03 (13) 116.67 (13)	C4a—C8e—C1 C4a—C8e—C8d	120.1 (2) 110.1 (2)
C4a-C4b-C8c	104.3 (2)	C1—C8e—C8d	129.7 (3)
C4c-C4b-C8c	103.50 (13)	O3-C9-O10	111.9 (2)
C5—C4c—C8a	121.2 (2)	O3-C9-C17	111.3 (2)
C5—C4c—C4b	126.4 (2)	O10-C9-C17	107.5 (2)
C8a—C4c—C4b	112.4 (2)	O3-C9-C8b	104.7 (2)
C4cC8aC8b	111.90 (14)	O10—C9—C8b	104.9 (2)
C8—C8a—C8b	129.0 (2)	C17—C9—C8b	116.4 (2)
C8a—C8b—C9	116.4 (2)	O4-C10-C11	118.40 (15)
C8a—C8b—C8c	104.93 (15)	O4—C10—C8c	118.11 (14)
C9—C8b—C8c	103.8 (2)	C11-C10-C8c	123.45 (14)
C10-C8c-C8d	114.40(15)	C18—C17—C9	121.2 (2)
C10-C8c-C8b	112.37 (13)	C22-C17-C9	119.4 (2)
C8d—C8c—C8b	103.5 (2)		

Crystals of appropriate dimensions of both (3) and (5) were mounted on glass fibers in random orientations. Auto-indexing of ten centered reflections from the rotation photograph indicated a monoclinic lattice for (3) and an orthorhombic lattice for (5). Axial photographs were taken to confirm the Laue symmetry and cell lengths. Intensity data were collected with a variable scan speed. Data reduction, structure solution and structure refinement were carried out using the *SHELXTL-Plus* software package (Sheldrick, 1995). The structures were solved by direct methods. Full-matrix leastsquares refinement minimized $w(F_o^2 - F_c^2)^2$. The non-H atoms were refined anisotropically to convergence. All H atoms were refined using an appropriate riding model.

For both compounds, data collection: P3 (Siemens, 1990); cell refinement: P3; data reduction: XDISK in SHELXTL Plus (Sheldrick, 1995); program(s) used to solve structures: SHELXTL-Plus; program(s) used to refine structures: SHELXTL-Plus; molecular graphics: SHELXTL-Plus; software used to prepare material for publication: SHELXTL-Plus.

The authors thank the Council of Scientific and Industrial Research, Government of India (SAK, TM, SD and MVG), the National Science Foundation, Department of Chemistry of the University of Missouri–St. Louis (NPR) and the Office of Basic Energy Sciences of the US Department of Energy (MVG) for financial support of this work. This is document No. NDRL 3736 from the ND Radiation Laboratory and No. RRLT-PRU 49 from the RRL (CSIR), Trivandrum.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: PT1008). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Kumar, S. A., Asokan, C. V., Mathew, T., Ramaiah, D., Das, S., Rath, N. P. & George, M. V. (1996). J. Org. Chem. In the press.
- Murty, B. A. R. C., Pratapan, S., Kumar, C. V., Das, P. K. & George, M. V. (1985). J. Org. Chem. 50, 2533–2538.
- Pratapan, S., Ashok, K., Gopidas, K. R., Rath, N. P., Das, P. K. & George, M. V. (1990). J. Org. Chem. 55, 1304–1308.
- Sheldrick, G. M. (1995). SHELXTL-Plus. Program for the Solution and Refinement of Crystal Structures. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1990). P3. A Crystallographic Data Collection Program. Version 4.2. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

© 1996 International Union of Crystallography Printed in Great Britain – all rights reserved Acta Cryst. (1996). C52, 2800-2802

The Photoproduct Derived from 9-Cyanodibenzobarrelene

M. MUNEER,^{*a*} M. V. GEORGE^{a,b} and NIGAM P. RATH^c

^aRegional Research Laboratory (CSIR), Trivandrum 695019, India, ^bRadiation Laboratory, University of Notre Dame, Notre Dame, IN 46556, USA, and ^cDepartment of Chemistry, University of Missouri–St. Louis, 8001 Natural Bridge Road, St. Louis, MO 63121, USA. E-mail: nigam_rath@umsl.edu

(Received 25 July 1994; accepted 31 May 1996)

Abstract

The structure of the photoproduct derived from 9-cyano-11,12-dibenzoyl-9,10-dihydro-9,10-ethenoanthracene has been unambiguously established as 8b-cyano-8c,8d-dibenzoyl-4b,8b,8c,8d-tetrahydrodibenzo[a,f]cyclopropa-[c,d]pentalene, C₃₁H₁₉NO₂, through X-ray crystallographic analysis.

Comment

It has been reported previously that dibenzobarrelenes containing the 1,2-dibenzoylalkene moiety undergo photorearrangement on irradiation to give predominantly the corresponding dibenzocyclopropapentalenes or products derived from them (Kumar, Murty, Lahiri, Chackacheri, Scaiano & George 1994; Murty, Pratapan, Kumar, Das & George, 1995; Pratapan, Ashok, Cyr, Das & George, 1987; Pratapan, Ashok, Gopidas, Rath, Das & George, 1990; Asokan, Kumar, Das, Rath & George, 1991; Kumar, Asokan, Das, Wilbur, Rath & George, 1993). If the dibenzobarrelenes have bridgehead substituents, then regioisomeric dibenzocyclopropapentalenes could be formed on irradiation. The regioselectivity in these rearrangements could, however, depend on several factors including the steric and electronic requirements of the bridgehead substituent. We have reported previously (Murty, Pratapan, Kumar, Das & George, 1995) that the photolysis of 9-cyano-11,12-dibenzoyl-9,10-dihydro-9,10-ethanoanthracene, (1), gives exclusively the title 8b-cyanosubstituted dibenzocyclopropapentalene, (2) and not the 4b-substituted regioisomer.

In view of the recent report that dibenzocyclopropapentalenes containing three substituents attached to the cyclopropane ring show a propensity for ring